
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI for Cray XE/XK Systems
 & Recent Enhancements

Heidi Poxon

Technical Lead
Programming Environment

Cray Inc.

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer

© Cray Inc. Proprietary

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights
is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other
third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA,
and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2016 Cray Inc.

March 2016 2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Topics

© Cray Inc. Proprietary 3

● Cray MPI overview

● Development focus / recent enhancements

● Overlapping computation and communication

● Memory footprint

● MPI I/O statistics

● MPI Tuning controls for Cray systems

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray MPI

●  Implementation based on MPICH3 from ANL
●  ANL does base MPI standard support, we add new functionality,

improve performance both on-node, and all ranges of scale including
at very high scale

●  Full MPI-3.1 support (Dec 2015) with the exception of
●  MPI-2 Dynamic process management (MPI_Comm_spawn)

●  MPI Forum active participant

●  Participated in the MPICH ABI Consortium
●  ANL MPICH, Intel MPI, IBM PE MPI and Cray MPI

© Cray Inc. Proprietary 4 March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Development Focus Areas

5

● Minimize communication latency, maximize
communication bandwidth

●  Improve support for asynchronous communication
 (communication/computation overlap)

● Architecture-specific solutions to optimize

communication performance

● New tools and features to help users understand
application performance bottlenecks

Copyright 2015 Cray Inc © Cray Inc. Proprietary March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPICH/Cray MPI Layout

March 2016 © Cray Inc. Proprietary 6

Application

MPI Interface

MPICH

ADI3

CH3 Device

CH3 Interface

Xpmem

Nemesis NetMod Interface

GNI GM MX PSM IB TCP
Cray XE specific

components

PM
I

Nemesis

Jo
b

la
un

ch
er

ROMIO

ADIO

Lus. GPFS ...

Optimized
Collectives

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Gemini Features Used by Cray MPI

March 2016 © Cray Inc. Proprietary 7

● FMA (Fast Memory Access)

●  Used for small messages
●  Very low overhead è good latency

● DMA offload engine (BTE or Block Transfer Engine)
●  Used for larger messages
●  All ranks on node share BTE resources (4 virtual channels /

node)
●  Can be initiated in user mode
●  Once initiated, BTE transfers proceed without processor

intervention
●  Best means to overlap communication with computation

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Asynchronous Progress Engine

© Cray Inc. Proprietary 8

●  Used to improve communication/computation overlap

●  Used for non-blocking pt2pt and collective MPI calls

●  Each MPI rank starts a “helper thread” during MPI_Init

●  Helper threads progress the MPI state engine for both Send and Recv
while application is computing

●  Only effective if used with core specialization to reserve a core/node for
the helper threads or using the Intel hyper-threads

●  Must set the following to enable Asynchronous Progress Threads:
●  export MPICH_NEMESIS_ASYNC_PROGRESS=(SC or MC)
●  export MPICH_MAX_THREAD_SAFETY=multiple

●  10% or more performance improvements with some apps

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Fine-Grained Multi-threading for MPI

© Cray Inc. Proprietary 9

●  Optimized support for programs that perform MPI operations within
threaded regions

●  Only MPI point-to-point operations optimized at this time

●  Default MPI library uses a global lock
●  A single global_mutex is used for all MPI calls

●  Separate MT MPI library uses per-object (fine-grained) locks
●  The global_mutex is still used, but critical sections are much smaller
●  Additional small locks have also been added

●  Must link with a separate version of Cray MPI library
●  Use the compiler driver option: -craympich-mt

●  To use:
●  >	cc	-craympich-mt	-o	mpi_mt_test.x		mpi_mt_test.c	
●  >	export	MPICH_MAX_THREAD_SAFETY=multiple	

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray MPI-3 Non-blocking Collectives

March 2016

●  Allows overlap with computation during collective operations

●  All MPI collectives have MPI_I<name> versions (i.e. MPI_Ibcast)

●  MPI Asynchronous Progress Engine Feature is needed to give the
best overlap

●  To enable, use the following environment variables
●  MPICH_NEMESIS_ASYNC_PROGRESS=(SC or MC)
 (setting to 1 is the same as setting it to SC on Gemini, MC on Aries)
●  MPICH_MAX_THREAD_SAFETY=multiple

●  Best to run using:
●  Core-specialization (aprun –r) on Gemini, or if no hyperthreads available.
●  Unused Intel hyperthread cores (aprun –j) on Aries

© Cray Inc. Proprietary 10

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Minimized MPI Memory Footprint

© Cray Inc. Proprietary 11

●  Implemented a Dynamic Virtual Channel (VC) Feature
●  Internal VC structures only allocated when one rank makes direct

contact with another rank
●  Prior MPT versions allocated VCs statically for all ranks in job

during MPI_Init
●  Enabled by default starting with MPT 7.2.3

●  Implemented special optimizations for MPI_Alltoall and

MPI_Alltoallv that don’t require use of VC structures

● Significantly reduces MPI footprint for many HPC apps
(nearest neighbor communication plus global
collectives)

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI I/O File Access Pattern Statistics

© Cray Inc. Proprietary 12

● When setting MPICH_MPIIO_STATS=1, a summary of file
write and read access patterns are written by rank 0 to
stderr

● When setting MPICH_MPIIO_STATS=2, a set of data files
(one per rank) are written which can be summarized with
the supplied cray_mpiio_summary script

●  The “Optimizing MPI I/O” white paper describes how to
interpret the data and makes suggestions on how to
improve your application.
●  Available on docs.cray.com under Knowledge Base

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI I/O File Access Pattern Statistics (2)

13

Timeline of MPI-I/O statistics. Many different variables tracked
 export MPICH_MPIIO_STATS=2

March 2016 © Cray Inc. Proprietary

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI Tuning Controls for
Cray Systems with Gemini

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

●  Vary your rank placement to optimize communication

●  Can be a quick, low-hassle way to improve performance

●  Use CrayPat to produce a specific MPICH_RANK_ORDER file to
maximize intra-node communication

●  Or, use perftools grid_order command with your application's grid
dimensions to layout MPI ranks in alignment with data grid

●  To use:
●  name your custom rank order file: MPICH_RANK_ORDER
●  export MPICH_RANK_REORDER_METHOD=3

MPICH_RANK_REORDER_METHOD

15 March 2016 © Cray Inc. Proprietary

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Linking and running with hugepages can offer a
significant performance improvement for many MPI
communication sequences, including MPI collectives
and basic MPI_Send/MPI_Recv calls.

● To use HUGEPAGES:
●  module load craype-hugepages8M (many sizes

supported)
●  << compile your app >>
●  module load craype-hugepages8M
●  << run your app >>

Use HUGEPAGES

16 March 2016 © Cray Inc. Proprietary

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

● Enables highly optimized algorithms which may result in

significant performance gains

● Not enabled by default to avoid disadvantages
●  May reduce resources MPICH has available (share with DMAPP)
●  DMAPP does not handle transient network errors

● Supported DMAPP-optimized functions:

●  MPI_Allreduce
●  MPI_Bcast
●  MPI_Barrier
●  MPI_Put / MPI_Get / MPI_Accumulate

●  To use (link with libdmapp):
●  Collective use: export MPICH_USE_DMAPP_COLL=1
●  RMA one-sided use: export MPICH_RMA_OVER_DMAPP=1

MPICH_USE_DMAPP_COLL / MPICH_RMA_OVER_DMAPP

© Cray Inc. Proprietary 17 March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

●  Most significant env variables to play with:

●  MPICH_GNI_MAX_VSHORT_MSG_SIZE
●  Controls max message size for E0 mailbox path (Default: varies)

●  MPICH_GNI_MAX_EAGER_MSG_SIZE
●  Controls max message size for E1 Eager Path (Default: 8K bytes)

●  MPICH_GNI_NUM_BUFS
●  Controls number of 32KB internal buffers for E1 path (Default: 64)

●  MPICH_GNI_NDREG_MAXSIZE
●  Controls max message size for R0 Rendezvous Path (Default: 512K bytes)

●  MPICH_GNI_RDMA_THRESHOLD
●  Controls threshold for switching to BTE from FMA (Default: 1K bytes)

●  See the MPI man page for further details

Tune Inter-node Traffic on Gemini

18 March 2016 © Cray Inc. Proprietary

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

●  Maximize overlap of communication with computation

●  Enable asynchronous progress engine
●  Launches additional thread per MPI process to help progress communication in

the background

●  Consider trying this if all of these apply to your application:
●  App uses non-blocking MPI communication (MPI_Isend/MPI_Irecv or non-

blocking collectives) with medium-large messages
●  There is computation work between MPI communication sequences
●  Hyperthreads are available on each node (not in use by your application)

●  To use:
●  export MPICH_MAX_THREAD_SAFETY=multiple
●  export MPICH_NEMESIS_ASYNC_PROGRESS=SC
●  Use aprun –r1 option

MPICH_NEMESIS_ASYNC_PROGRESS

© Cray Inc. Proprietary 19 March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

●  Different algorithms may be used for different message
sizes in collectives (e.g.)
●  Algorithm A might be used for Alltoall for messages < 1K.
●  Algorithm B might be used for messages >= 1K.

●  To optimize a collective, you can modify the cutoff points
when different algorithms are used. This may improve
performance.

●  MPICH_ALLTOALL_SHORT_MSG
●  MPICH_ALLGATHER_VSHORT_MSG
●  MPICH_ALLGATHERV_VSHORT_MSG
●  MPICH_GATHERV_SHORT_MSG
●  MPICH_SCATTERV_SHORT_MSG

●  See the MPI man page for further details

Specific Collective Algorithm Tuning

© Cray Inc. Proprietary 20 March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Thank You

