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Topics 
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● Cray MPI overview 

● Development focus / recent enhancements 

● Overlapping computation and communication 

● Memory footprint 
 
● MPI I/O statistics 

● MPI Tuning controls for Cray systems 
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Cray MPI 

●  Implementation based on MPICH3 from ANL 
●  ANL does base MPI standard support,  we add new functionality, 

improve performance both on-node, and all ranges of scale including 
at very high scale 

●  Full MPI-3.1 support (Dec 2015) with the exception of 
●  MPI-2 Dynamic process management (MPI_Comm_spawn) 

●  MPI Forum active participant 

●  Participated in the MPICH ABI Consortium  
●  ANL MPICH, Intel MPI, IBM PE MPI and Cray MPI 

© Cray Inc. Proprietary 4 March 2016 



C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Development Focus Areas 

5 

● Minimize communication latency, maximize 
communication bandwidth 

●  Improve support for asynchronous communication  
   (communication/computation overlap) 
 
● Architecture-specific solutions to optimize 

communication performance 

● New tools and features to help users understand 
application performance bottlenecks 
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MPICH/Cray MPI Layout  
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Gemini Features Used by Cray MPI 
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● FMA (Fast Memory Access) 

●  Used for small messages 
●  Very low overhead  è good latency 
 

● DMA offload engine (BTE or Block Transfer Engine) 
●  Used for larger messages 
●  All ranks on node share BTE resources ( 4 virtual channels / 

node ) 
●  Can be initiated in user mode  
●  Once initiated, BTE transfers proceed without processor 

intervention 
●  Best means to overlap communication with computation 
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Asynchronous Progress Engine 
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●  Used to improve communication/computation overlap 

●  Used for non-blocking pt2pt and collective MPI calls 

●  Each MPI rank starts a “helper thread” during MPI_Init 

●  Helper threads progress the MPI state engine for both Send and Recv 
while application is computing 

●  Only effective if used with core specialization to reserve a core/node for 
the helper threads or using the Intel hyper-threads 

●  Must set the following to enable Asynchronous Progress Threads: 
●  export MPICH_NEMESIS_ASYNC_PROGRESS=(SC or MC) 
●  export MPICH_MAX_THREAD_SAFETY=multiple 

●  10% or more performance improvements with some apps 
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Fine-Grained Multi-threading for MPI 

© Cray Inc. Proprietary 9 

●  Optimized support for programs that perform MPI operations within 
threaded regions 

 
●  Only MPI point-to-point operations optimized at this time 

●  Default MPI library uses a global lock 
●  A single global_mutex is used for all MPI calls 

●  Separate MT MPI library uses per-object (fine-grained) locks 
●  The global_mutex is still used, but critical sections are much smaller 
●  Additional small locks have also been added 

●  Must link with a separate version of Cray MPI library  
●  Use the compiler driver option:  -craympich-mt 

●  To use: 
●  >	cc	-craympich-mt	-o	mpi_mt_test.x		mpi_mt_test.c	
●  >	export	MPICH_MAX_THREAD_SAFETY=multiple	
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Cray MPI-3 Non-blocking Collectives 
 

March 2016 

●  Allows overlap with computation during collective operations 

●  All MPI collectives have MPI_I<name> versions (i.e. MPI_Ibcast) 

●  MPI Asynchronous Progress Engine Feature is needed to give the 
best overlap 

●  To enable, use the following environment variables 
●  MPICH_NEMESIS_ASYNC_PROGRESS=(SC or MC) 
    (setting to 1 is the same as setting it to SC on Gemini, MC on Aries) 
●  MPICH_MAX_THREAD_SAFETY=multiple 

●  Best to run using: 
●  Core-specialization (aprun –r) on Gemini, or if no hyperthreads available. 
●  Unused Intel hyperthread cores (aprun –j) on Aries 
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Minimized MPI Memory Footprint 
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●  Implemented a Dynamic Virtual Channel (VC) Feature 
●  Internal VC structures only allocated when one rank makes direct 

contact with another rank 
●  Prior MPT versions allocated VCs statically for all ranks in job 

during MPI_Init 
●  Enabled by default starting with MPT 7.2.3 

 
●  Implemented special optimizations for MPI_Alltoall and 

MPI_Alltoallv that don’t require use of VC structures 

● Significantly reduces MPI footprint for many HPC apps 
(nearest neighbor communication plus global 
collectives) 
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MPI I/O File Access Pattern Statistics 
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● When setting MPICH_MPIIO_STATS=1, a summary of file 
write and read access patterns are written by rank 0 to 
stderr 

● When setting MPICH_MPIIO_STATS=2, a set of data files 
(one per rank) are written which can be summarized with 
the supplied cray_mpiio_summary script 

●  The “Optimizing MPI I/O” white paper describes how to 
interpret the data and makes suggestions on how to 
improve your application. 
●  Available on docs.cray.com under Knowledge Base 
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MPI I/O File Access Pattern Statistics (2) 
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Timeline of MPI-I/O statistics. Many different variables tracked 
  export MPICH_MPIIO_STATS=2  
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MPI Tuning Controls for  
Cray Systems with Gemini 
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●  Vary your rank placement to optimize communication 

●  Can be a quick, low-hassle way to improve performance 

●  Use CrayPat to produce a specific MPICH_RANK_ORDER file to 
maximize intra-node communication 

●  Or, use perftools grid_order command with your application's grid 
dimensions to layout MPI ranks in alignment with data grid  

●  To use:   
●  name your custom rank order file:  MPICH_RANK_ORDER  
●  export MPICH_RANK_REORDER_METHOD=3 

MPICH_RANK_REORDER_METHOD 
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Linking and running with hugepages can offer a 
significant performance improvement for many MPI 
communication sequences, including MPI collectives 
and basic MPI_Send/MPI_Recv calls. 

● To use HUGEPAGES: 
●  module load craype-hugepages8M (many sizes 

supported) 
●  <<  compile your app  >> 
●  module load craype-hugepages8M 
●  <<  run your app  >> 

Use HUGEPAGES 
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● Enables highly optimized algorithms which may result in 

significant performance gains 

● Not enabled by default to avoid disadvantages 
●  May reduce resources MPICH has available (share with DMAPP) 
●  DMAPP does not handle transient network errors 

 
● Supported DMAPP-optimized functions: 

●   MPI_Allreduce 
●   MPI_Bcast 
●   MPI_Barrier 
●   MPI_Put / MPI_Get / MPI_Accumulate 

●  To use (link with libdmapp): 
●  Collective use:            export MPICH_USE_DMAPP_COLL=1 
●  RMA one-sided use:   export MPICH_RMA_OVER_DMAPP=1 

MPICH_USE_DMAPP_COLL / MPICH_RMA_OVER_DMAPP 
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●  Most significant env variables to play with: 

●  MPICH_GNI_MAX_VSHORT_MSG_SIZE 
●  Controls max message size for E0 mailbox path (Default: varies) 

●  MPICH_GNI_MAX_EAGER_MSG_SIZE 
●  Controls max message size for E1 Eager Path (Default: 8K bytes) 

●  MPICH_GNI_NUM_BUFS 
●  Controls number of 32KB internal buffers for E1 path (Default: 64) 

●  MPICH_GNI_NDREG_MAXSIZE 
●  Controls max message size for R0 Rendezvous Path (Default: 512K bytes) 

●  MPICH_GNI_RDMA_THRESHOLD 
●  Controls threshold for switching to BTE from FMA (Default: 1K bytes) 

 
●  See the MPI man page for further details 

Tune Inter-node Traffic on Gemini 
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●  Maximize overlap of communication with computation 

●  Enable asynchronous progress engine 
●  Launches additional thread per MPI process to help progress communication in 

the background 

●  Consider trying this if all of these apply to your application: 
●  App uses non-blocking MPI communication (MPI_Isend/MPI_Irecv or non-

blocking collectives) with medium-large messages 
●  There is computation work between MPI communication sequences 
●  Hyperthreads are available on each node (not in use by your application) 

●  To use: 
●  export MPICH_MAX_THREAD_SAFETY=multiple 
●  export MPICH_NEMESIS_ASYNC_PROGRESS=SC 
●  Use aprun –r1 option 

MPICH_NEMESIS_ASYNC_PROGRESS 
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●  Different algorithms may be used for different message 
sizes in collectives (e.g.) 
●  Algorithm A might be used for Alltoall for messages < 1K. 
●  Algorithm B might be used for messages >= 1K. 

●  To optimize a collective, you can modify the cutoff points 
when different algorithms are used.  This may improve 
performance. 

●  MPICH_ALLTOALL_SHORT_MSG 
●  MPICH_ALLGATHER_VSHORT_MSG 
●  MPICH_ALLGATHERV_VSHORT_MSG 
●  MPICH_GATHERV_SHORT_MSG 
●  MPICH_SCATTERV_SHORT_MSG 

 
●  See the MPI man page for further details 

Specific Collective Algorithm Tuning 
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Thank You 


